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Abstract. A simple approach is presented to estimate the position of the first opposite-parity state for p-
and sd-shell nuclei. The approach is based on the assumption that the quadrupole-quadrupole interaction
determines the energy of the lowest-lying states, and they are a mixture of a few leading SU(3) irreps
even in the presence of further symmetry-breaking interactions. The quadrupole-quadrupole interaction
together with the indirect effect of the Pauli exclusion principle will then lead to a rich structure in the
trends of observables along Z, N and A chains. A comparison with the experimental data is given, with
the carbon chain as illustrative example. The findings suggest that the changing shell structure near the
neutron drip line might be explained by the appearance of low-lying highly deformed 2h̄ω states.

PACS. 21.60.Fw Models based on group theory – 21.10.Hw Spin, parity and isobaric spin

1 Introduction

With the evolution of nuclear physics increasingly com-
plex models have been developed in order to describe the
structure of the nucleus, this many-body system of nu-
cleons interacting via complicated forces. These models
are considered successful if they are able to account for a
wide variety of observables with reasonable accuracy. In
order to fulfill these requirements it is usually necessary
to use numerous parameters and basic assumptions when
the models are constructed. Even then many models can
be used only in a limited domain of nuclei, and even there
their performance is considered really successful only for
specific examples. At the same time the complicated ma-
chinery of these models often obscures the basic physical
picture behind the phenomena they describe.

In light of this one often finds simple approaches, in-
cluding even some oversimplified ones rather useful to gain
insight into nuclear structure and to obtain thumb rules
for certain structural properties of nuclei. For example,
in [1] a two-level model was introduced which helped to
understand pairing properties and the onset of deforma-
tion in nuclei. In [2] a simple picture was used to predict
shell inversion in 11Be, while in [3] the structure of nu-
clei is looked upon from the simplest angle and trends
in structure can be understood via elementary considera-
tions. Such simple models can be as useful as very sophis-
ticated ones, because they allow for a transparent descrip-
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tion of gross structures and shed some light onto usually
complicated situations.

In this contribution we present a schematic but sys-
tematic approach designed to account for some elementary
observables of p- and sd-shell nuclei in a consistent way.
These are the excitation energies of the lowest positive-
and negative-parity states with special attention to the
position of the first state with parity opposite to that of
the ground state. This approach rests on the assumption
that an extremely simplified (one-parameter) Hamiltonian
dominated by the quadrupole-quadrupole interaction and
observing the Pauli principle is sufficient to trace quali-
tatively the position of these states. It is assumed that
these states originate from the lowest (i.e. the 0h̄ω, 1h̄ω
and 2h̄ω) shells and have dominant contribution only from
a few leading SU(3) basis states of the Elliott model [4].
It then follows that even if the SU(3) symmetry is bro-
ken, the relative energies of these states are not influenced
significantly by the mixing.

The rationale of this simple approach is that focus-
ing only on certain basic observables of a large number
of nuclei (from 4He to 40Ca) can be at least as useful as
more sophisticated models that describe many levels of
one (or a few) nucleus. Despite its simplicity, the present
approach takes into account the most important factors in
this region: the quadrupole-quadrupole interaction that
generates deformation and the Pauli principle that se-
lects the allowed (SU(3)) configurations. The interplay of
these two key elements then generates characteristic struc-
tural changes in the trend of the fundamental observables
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Table 1. Leading SU(3) representations associated with n identical nucleons (protons or neutrons) occupying the i-th shell,
and the corresponding permutational symmetry [f ]. For configurations with n > 6 on the sd shell the conjugate representation
belonging to 12− n has to be taken. Only configurations appearing up to 2h̄ω excitations are displayed.

n 0 1 2 3 4 5 6
[f ] [0] [1] [11] [21] [22] [32] [33]

i Shell

1 s (0,0) (0,0) (0,0)
2 p (0,0) (1,0) (2,0) (1,1) (0,2) (0,1) (0,0)
3 sd (0,0) (2,0) (4,0) (4,1) (4,2) (5,1) (6,0), (0,6)
4 pf (0,0) (3,0) (6,0)
5 sdg (0,0) (4,0)

we investigate, and does so without incorporating further
model assumptions concerning e.g. the deformation of nu-
clei, which is an important input for alternative models.
Another advantage of the SU(3) scheme is that it is rel-
atively easy to pin down regions where the basic assump-
tions are expected to break down, and where the results
thus have to be accepted with caution. It is also possible
to estimate the importance of the neglected interactions
(pairing, spin-orbit, etc.)

The aim of this study is not the description of individ-
ual nuclei, rather to search for trends in the mass, neu-
tron and proton number, which might indicate structural
changes. This can be instructive for experiments targeting
unexplored regions of the nuclide chart.

2 The approach

In this section we present the basic assumptions of our
approach and discuss their importance together with their
validity in various domains of p- and sd-shell nuclei [5].
Assumption 1. The lowest-lying states can reasonably be
described in terms of the harmonic oscillator shell model
of Elliott [4] in the sense that they have dominant contri-
bution only from a few leading SU(3) basis states.

The validity of the Elliott model has been proven for
many light nuclei, which means that the physical states
can be described reasonably well in terms of the SU(3)
basis states of the model. This implies that the SU(3) sym-
metry is largely respected by the interaction terms consid-
ered in the Hamiltonian. The most important term in the
Elliott Hamiltonian is the Q · Q quadrupole-quadrupole
interaction, which is closely related to the second-order
Casimir invariant C2 of the SU(3) group. In fact, in the
best examples of the Elliott model (20Ne, 24Mg, etc.) the
physical states are almost pure SU(3) states belonging
to the leading SU(3) irreducible representation (irrep)
(λ, µ), i.e. the one for which C2 has maximal eigenvalue
C2(λ, µ) = λ2 + µ2 + λµ+ 3λ+ 3µ. These leading SU(3)
states are also the most deformed ones. While the over-
all magnitude of λ and µ determine the magnitude of the
deformation, their relative size is indicative for the na-
ture of the deformation. In particular, irreps with large λ
and small µ represent prolate deformation, while the re-
verse situation corresponds to oblate shape. When neither

numbers are small compared to the other, a triaxial shape
occurs.

Obviously, in most cases the SU(3) symmetry is bro-
ken, nevertheless, it was found that even when this
happens, only SU(3) irreps with similar C2(λ, µ) get
mixed [6], so the average expectation value of the Casimir
invariant C2 is close to the expectation value for the lead-
ing SU(3) irrep. If this mechanism holds not only for the
0h̄ω states, but also for the lowest-lying 1h̄ω and 2h̄ω
states, then the energy differences of the opposite-parity
levels are moderately sensitive to the actual symmetry
breaking.

This scenario is a reasonable approximation in mid-
shell situations, but it might fail close to shell closures,
where there are fewer SU(3) irreps and even these have
different C2(λ, µ) expectation value. Furthermore, the
breakdown of the SU(3) symmetry is also stronger near
the shell closures, i.e. where N and Z are close to 2, 8
and 20.

In general the construction of the full SU(3) model
space is a difficult task, however, the leading SU(3) irreps
can be identified relatively easily. Due to the total anti-
symmetry of the nuclear wave function, the spatial and
the spin-isospin structure of the nucleus is correlated. In
practical terms this means that the maximal spatial sym-
metry (exhibiting itself in maximal deformation) comes
with maximal antisymmetry in the spin-isospin sector, so
in the lowest-lying configurations the protons and neu-
trons tend to pair off separately. There is thus a rela-
tively simple recipe which we can use to determine the
SU(3) character of the states in question by extracting
the SU(3) content of the proton and neutron configura-
tions on each shell (s, p, sd, pf and sdg, the latter two
only in excited configurations), and combining them to
obtain the largest possible (λ, µ) irrep. Table 1 lists the
(λ, µ) quantum numbers associated with proton and neu-
tron configurations possessing maximal symmetry in the
spatial sector [4]. We list all configurations on the s and p
shells, while for the sd shell we present the (λ, µ) irreps up
to particle number n = 6, which corresponds to the mid-
dle of the shell: for n > 6 the appropriate SU(3) irreps
are obtained as the conjugates (µ, λ) of the SU(3) irreps
belonging to 12 − n < 6 particles. In table 1 the pf and
sdg shells appear with configurations consisting of up to
2 and 1 particles, respectively, because only such systems
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Table 2. Possible nucleon configurations and leading SU(3)
representations for 0, 1 and 2h̄ω in the proton and neutron
sector for 16C.

Protons Neutrons

0h̄ω s2p4 (0,2) s2p6sd2 (4,0)

1h̄ω s2p3sd1 (3,1) s2p6sd1pf1 (5,0)
s1p5 (0,1) s2p5sd3 (4,2)

2h̄ω s2p3pf1 (4,1) s2p6sd1sdg1 (6,0)
s2p2sd2 (6,0) s2p6pf2 (6,0)
s1p4sd1 (2,2) s2p5sd2pf1 (7,1)
s0p6 (0,0) s2p4sd4 (4,4)

s1p6sd3 (4,1)

can appear when we determine 1h̄ω and 2h̄ω excitations
of sd-shell nuclei. Table 1 also contains the permutational
symmetry [f ] associated with the proton and neutron con-
figurations on each major shell, and it is a straightforward
task to construct the possible permutational symmetries
of both nucleon types and of the whole nuclear state.

In order to determine the leading SU(3) irrep (λ, µ)
for configurations without major shell excitation (0h̄ω)
we simply have to take the (λiπ, µ

i
π) and (λiν , µ

i
ν) irreps

obtained for protons and neutrons from the i-th shell (s,
p, sd, pf, sdg for i = 1, 2, 3, 4, 5, respectively), and com-

bine them to get λ =
∑5

i=1(λ
i
π+λiν), µ =

∑5

i=1(µ
i
π+µiν).

We illustrate this procedure with the example of the 16C
nucleus consisting of Z = 6 protons and N = 10 neutrons.
Table 2 displays the possible proton and neutron config-
urations up to two shell excitation quanta, together with
the corresponding leading (λiπ, µ

i
π) and (λiν , µ

i
ν) SU(3) ir-

reps. The leading 0h̄ω is then found to be (4,2).
As can be seen from table 2, there are several con-

figurations for 1h̄ω depending on whether we excite one
nucleon from the valence shell to the next highest shell
or from the shell below to the valence shell. We have to
calculate the leading irrep from each of these following the
recipe given above. The leading SU(3) irrep is found to
be (7,1), which originates from the (3,1) proton and (4,0)
neutron configuration. It also has to be mentioned that
in order to get rid of spurious states, the center-of-mass
motion has to be subtracted. In the harmonic-oscillator
picture this is done very easily: the SU(3) irreps of the
0h̄ω model space have to be multiplied by the (1,0) SU(3)
irrep representing one excitation quantum in the c.m. mo-
tion, and the resulting (λ, µ) states have to be subtracted
from the 1h̄ω model space obtained before [7]. The largest
(λ, µ) irrep with multiplicity larger than 0 will then be
the leading one for 1h̄ω. It is obvious from table 2 that
the (7,1) irrep is not redundant. The 2h̄ω space can be
constructed in a similar way: proton and neutron config-
urations with altogether two shell excitations have to be
considered. Then the leading SU(3) irrep is found to be
(10,0), which originates from the 2h̄ω (6,0) proton and the
0h̄ω (4,0) neutron configuration.

It has to be mentioned that in certain special situa-
tions the simple recipe outlined above might not produce
automatically the leading SU(3) state. This is the case in

the middle of the sd shell, when 6 identical nucleons can
yield the (6,0) and also the (0,6) SU(3) state, as can be
seen from table 1. In these ambiguous situations further
assumptions have to be made in order to select the config-
uration that leads to the leading SU(3) irrep of the total
wave function. The general rule is that the contribution of
the other type of nucleons, as well as that of the same type
of nucleons from the p shell have to be taken into consider-
ation: the leading SU(3) irrep is obtained if λ or µ reaches
the possible maximal value. This corresponds to a kind of
“polarization” effect in the sense that the two types of nu-
cleons attempt to realize similar kind of deformation, i.e.
prolate or oblate. In fact, this effect can appear in sd5 and
sd7 configurations too, to which the simple rule would as-
sign (5,1) and (1,5) as in table 1, while the construction of
the true leading SU(3) state might require the secondary
(2,4) and (4,2) states, with opposite kind of deformation.
Assumption 2. The simplified Hamiltonian

H = h̄ωN− χC2(λ, µ) (1)

is sufficient to account for the excitation energy of the
lowest few levels.

Here the first term accounts for major shell excita-
tions (N = 0, 1, 2), while C2 is the second-order Casimir
operator of SU(3) mentioned earlier. Since the states are
supposed to be composed of several SU(3) basis states
the expectation value of C2 should be the corresponding
average of the C2(λ, µ) eigenvalues. However, based on
Assumption 1 we replace this average with the eigenvalue
belonging to the leading SU(3) state, which can be de-
termined using the mechanism presented previously. The
two coupling constants appearing in (1) are known to be
parametrized in terms of A only. In particular, we can take
the formula

h̄ω = 45A−1/3 − 25A−2/3, (2)

(in units of MeV), which was deduced from the systematic
behaviour for light nuclei near the valley of stability [8].
This value might thus change when the neutron drip line
is approached: due to loosely bound neutrons the average
h̄ω might be lowered. For χ we take

χ = aA−
5

3 , (3)

which is a generally accepted parametrization [9]. We ad-
justed a, the only parameter appearing in our approach
to the χ value calculated for 100 nuclei using the expres-
sion (1) and the experimental energy of the first opposite-
parity level [5]. The trend of χ and its parametrization in
terms of (3) is displayed in fig. 1 using the adjusted a = 30
MeV value. The deviation for low A might be partly due
to the underestimation of h̄ω: this is indicated by the fact
that the adjusted χ is negative in a number of cases, which
is the consequence of the fact that h̄ω is lower than the
energy of the lowest-lying opposite-parity state. The in-
creasing trend of the data points towards A = 40 and the
maximum near A = 16 might be an indirect effect of the
shell closure too, which may lead to deviations from the
smooth behaviour of h̄ω in (2) and/or χ in (3). This might
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Fig. 1. The parameter χ as a function of the mass number

A (full line). The parametrization aA−
5

3 was chosen with a =
30MeV. Crosses indicate χ values calculated back from (1)
using the experimental energy of the lowest opposite-parity
level.

be related to the observation made before, i.e. that the va-
lidity of the SU(3) scheme might break down near shell
closures, where the importance of the Q · Q interaction
is expected to be reduced. In practical terms this means
that the SU(3) breaking interactions (e.g., pairing) might
mix further SU(3) states with the leading ones, so the
replacement of 〈C2(λ, µ)〉 with the C2(λ, µ) eigenvalue of
the leading SU(3) irrep might not be a good approxima-
tion in this case. In fact, this effect could be compensated
by taking larger χ values near the shell closures, which is
exactly what fig. 1 indicates in these regions.

In a full scale spectroscopic study further terms should
also be considered in (1), however, if we focus only on low-
lying levels that have low values for the orbital angular
momentum and spin, terms like the spin-orbit interaction,
L2, L · S and spin-dependent forces are not expected to
contribute significantly to the energy [5].

Before closing this section we return to the major as-
sumptions of our approach, i.e. that in order to account
for the general trends in the lowest-lying levels of nuclei
in this region it is sufficient to incorporate the two most
important factors, i.e. the quadrupole-quadrupole inter-
action that generates deformation and the Pauli princi-
ple that selects the allowed (SU(3)) configurations. The
interplay of these two key elements then generates char-
acteristic structural changes in the trend of the funda-
mental observables we investigate, and does so without
incorporating further model assumptions concerning e.g.
the deformation of nuclei, which is an important input for
alternative models. Obviously, the breakdown of SU(3)
symmetry and thus the mixing of SU(3) states has strong
influence on further observables. This is the case, for ex-
ample, with the electric quadrupole moment, because its
expectation value is calculated from quantities that signif-
icantly differ from each other in their magnitude, and in
addition, might also have different sign. Nevertheless, Q
can be calculated in a straightforward and parameter-free
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Fig. 2. The energy of the lowest opposite-parity (1h̄ω) level
in the C isotopes, and the lowest expected 2h̄ω level (open
circles). Dashed and full lines connect experimental and the-
oretical points, respectively. Crosses indicate experimentally
well-established opposite-parity states, while open boxes stand
for lower limits in energy. The lack of symbol stands for missing
data.

way for any SU(3) state [5], and this can be helpful in
determining the character of the nuclear states.

3 Applications

In [5] we presented the results concerning the position of
the first opposite-parity state and compared it to exper-
iment, as far as data were available. In total about 180
nuclei in the p and sd shell were considered and of those
predictions were made for about 80 nuclei. In general, the
agreement was satisfactory. The general trend was well
reproduced, although not always in terms of absolute val-
ues. As illustration we present our results in tabular and
graphical form in table 3 and fig. 2 for the carbon isotope
chain. It is seen from fig. 2 that the rich structure of the
experimental plot is excellently reproduced by the calcu-
lated one and not only in its trend, but also in magnitude.
It is remarkable that the odd-even staggering structure is
reproduced without any spin-dependent interactions, by
considering only terms depending on the orbital structure
of the nuclei. This odd-even staggering effect appeared in
other isotope chains too, mainly with even value of Z (Be,
Ne, Mg, Si, S) [5], and apart from the Mg chain, even
its magnitude was reproduced reasonably well. Another
characteristic feature reproduced rather successfully was
a bump near N = 8 in the N, O and F chain, which obvi-
ously originates from the shell closure effect.

Deviations from the experimental plot appeared in cer-
tain well-defined regions. This was the case for light iso-
topes A ≤ 10, where the theoretical curve systematically
fell behind the experimental one, leading even to shell in-
version in some cases. As we have discussed before, this
might be the consequence of the underestimation of h̄ω
in (2) in this region. We note that shell inversion (i.e.
E(1h̄ω) < E(0h̄ω)) was reproduced for 11Be too, the only
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Table 3. Numerical values of h̄ω and χ used in (1) to determine the energies of the lowest 1h̄ω and 2h̄ω states (ETh(1h̄ω),
ETh(2h̄ω)) with the indicated (λ, µ) quantum numbers for the C isotopes, displayed together with experimental information for
the ground and the lowest opposite-parity state.

Nucleus h̄ω χ (λ, µ) Jπg.s. 1st opp. p. state ETh(1h̄ω) ETh(2h̄ω)

0h̄ω 1h̄ω 2h̄ω EExp Jπ

12C 14.89 0.477 (0,4) (3,3) (6,2) 0+ 9.641 3− 6.778 6.878
13C 14.62 0.417 (0,3) (2,4) (5,3) 1

2

−

3.089 1

2

+
2.929 6.276

14C 14.37 0.369 (0,2) (2,3) (4,4) 0+ 6.093 1− 5.514 5.863
15C 14.14 0.329 (2,2) (4,3) (7,2) 1

2

+
3.103 1

2

−

2.956 5.254
16C 13.92 0.295 (4,2) (7,1) (10,0) 0+ ≥ 3.986 2 3.586 3.037
17C 13.72 0.267 (4,3) (7,2) (10,1) n.d. n.d. n.d. 4.111 4.485
18C 13.53 0.243 (4,4) (7,3) (10,2) (0+) > 1.62 n.d. 4.552 5.707
19C 13.35 0.222 (5,3) (7,4) (10,3) n.d. n.d. n.d. 1.600 3.422
20C 13.18 0.204 (0,8) (8,3) (10,4) n.d. n.d. n.d. 4.635 3.976

known isotope for which the parity of the ground state
differs from that corresponding to a 0h̄ω configuration.
Although this nucleus is close to the A ≤ 10 region, fig. 1
demonstrates that in this case the low ETh(1h̄ω) value is
not due to the underestimated h̄ω: the cross correspond-
ing to 11Be lies almost precisely on the χ curve calculated
from (3).

One more systematic deviation appears near A = 40,
where the ETh(1h̄ω) falls behind the energy of the first
opposite-parity level. This, again, is obviously due to the
shell closure effect which influences the results through an
underestimated χ value. This can also be traced down on
fig. 1.

The trends described here can be understood from ta-
ble 3, where the SU(3) states (λ, µ) are displayed for the
leading 0, 1 and 2h̄ω states. It is seen that proceeding
along the isotope chain λ and µ rarely change with more
than one unit as the shells are filled up with more and
more neutrons. There are, however, some discontinuities
for 1 and 2h̄ω, e.g. at 16C. This is due to the fact that
particles excited to higher shells typically contribute to
the whole system with SU(3) configurations correspond-
ing to prolate deformation (see table 2). This shows up in
a low ETh(2h̄ω) level too, as can be seen in fig. 2. It is
a general trend in other isotopes too that the 0h̄ω state
can be prolate, oblate or triaxial type, while the excited
states tend to proceed towards the prolate direction with
relatively large deformation.

We mention here that the 16C nucleus is known to ex-
hibit some unusual features. It was found, for example,
that there is an extremely weak electric quadrupole tran-
sition from the first 2+ state at Ex = 1.766MeV to the
ground state [10], furthermore, the observations were com-
patible with a large deformation, especially for protons. In
our scheme the leading 0h̄ω and 2h̄ω states belong to the
(λ, µ) = (4, 2) and (10,0) SU(3) irreps, which certainly
have rather different structure, leading to a strong hin-
drance in the electromagnetic transitions between them.
The 2h̄ω (10,0) states also have strongly prolate nature; in
particular, they are constructed from an s2, p2, sd2 pro-
ton structure, having (6,0) SU(3) character, and an s2,
p6, sd2 neutron structure, having (4,0) (see table 2). This
is clearly compatible with the experimental findings. The

simple scheme yields the energy of the lowest (10,0) state
at Ex = 3.04MeV, which is also rather close to the exper-
imental energy of the 2+

1 state. In summary, we assume
that even if the SU(3) symmetry is broken and the states
do not have pure SU(3) character, the ground state of
16C is dominated by 0h̄ω, while the 2+

1 state has domi-
nantly 2h̄ω structure. This also means that there should
be a 0+

2 state with dominantly 2h̄ω, and a 2+
2 state with

dominantly 0h̄ω character in the vicinity of these levels.
The states at Ex = 3.027MeV and 3.987MeV might be
candidates for these.

The example of the 16C nucleus shows that discontinu-
ities in some basic observables (e.g. quadrupole moment,
B(E2), deformation) in the ground-state region of nuclei
can be the result of the presence of highly deformed low-
lying 2h̄ω states. This mechanism eventually leads to the
smearing out of the energy gap and the apparent disap-
pearance of the shell structure. This scenario can also oc-
cur near the closure of the N = 20 (or Z = 20) shell, since
the 0h̄ω configuration has small deformation there, while
exciting nucleons to the pf and sdg shells may change the
deformation to the strongly prolate direction.

There is one more interesting finding found in some
nuclei that can be illustrated with the example of a carbon
isotope. In particular, there is a strong discontinuity in
the 0h̄ω (λ, µ) state at 20C: here the protons correspond
to the usual p2 (0,2) configuration, while the neutrons
are assigned to sd6 (0,6) or (6,0) (see table 1). Due to
the “polarization” effect discussed previously the lowest
energy arises if the (0,6) neutron state is taken, leading to
the overall (0,8) state (see table 3). The sd6 configurations
typically appear at nuclei with N , Z = 14, and can lead
to underestimated ETh(1h̄ω) or ETh(2h̄ω) energies in a
handful of isotopes near the middle of the sd shell [5].

Before closing this section, we mention that calcula-
tions for the quadrupole moments for about sixty nu-
clei with known QExp or |QExp| showed that the pic-
ture in which a few dominant SU(3) irreps get mixed
in the lowest-lying states is consistent with the experi-
mental data [5]. While QTh calculated using the leading
0h̄ω SU(3) state agrees remarkably well with QExp for
nuclei that are known have pure SU(3) character in their
ground state (20Ne, 24Mg, 19F, etc.), it represents an up-
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per limit in the case of most other nuclei, indicating that
some other leading SU(3) states mix with the leading one
significantly. In some cases QExp was also close to QTh

calculated with the leading 2h̄ω state indicating that such
states might play important role even in the ground-state
region.

4 Conclusions

We presented the basic ideas of a simple thumb rule
approach designed to estimate the position of the first
opposite-parity (1h̄ω) state and the first 2h̄ω state in light
nuclei. The full details of the method and the specific re-
sults concerning about 180 nuclei are given in [5], while
here we discussed in more detail only the C isotope chain
to illustrate the main findings. The method is specially
directed to experimental physicists and they can use it to
have a first estimate where to look for low lying opposite
parity states or, even more difficult, where to look at shell
inversion without the change in parity, i.e. shape isomeric
states, which is related to the inversion with the 2h̄ω shell.

The approach rests on two basic assumptions: 1) the
lowest-lying states are composed only of a few leading
(λ, µ) SU(3) irreps having comparable C2(λ, µ) SU(3)
eigenvalue; and 2) the terms other than the harmonic
and quadrupole-quadrupole interaction do not contribute
significantly to the energy. The approach contains only
one adjustable parameter (the coupling constant of the
quadrupole-quadrupole interaction), furthermore, the de-
formation of the nuclei follows directly from the calcula-
tions, rather than being an input parameter.

The simple rules outlined above imply that the joint
action of the quadrupole-quadrupole interaction and the
Pauli principle is able to reproduce the rich structure man-
ifested in the energy of the first opposite-parity state,
apart from some well-defined regions. The basic assump-
tions also guarantee that even if the SU(3) symmetry is
broken, this does not influence significantly the relative
energy of the lowest 0, 1 and 2h̄ω levels. Furthermore, al-
though other observables are more sensitive to the mixing
of SU(3) states, some of these, e.g. the quadrupole mo-
ment can be indicative of the nature (e.g. deformation) of
the states.

With the example of the C isotopes and 16C in partic-
ular, we demonstrated that some unusual findings usually
attributed to the disappearance of the shell structure can
be explained by our procedure. Though at 0h̄ω the SU(3)
irrep is small near a closed shell or (0,0) at a closed shell, at
nh̄ω (n > 0) the corresponding SU(3) irrep can represent
large deformation at low energy. This result does suggest
that the mean field description of nuclei near the neutron
drip line can still be valid and the disappearance of the
shell structure is only apparent. This effect is the result
of the Pauli exclusion principle which allows only small
SU(3) irreps for nuclei near a closed shell but results in
large SU(3) irreps, and thus a large quadrupole moment
and deformation for 2h̄ω excitations. This is also related
to the fact that in light nuclei small changes in the size
of the SU(3) irreps imply large changes in deformation,
which is a less drastic effect for heavier nuclei.
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